首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21028篇
  免费   2334篇
  国内免费   6258篇
  2024年   26篇
  2023年   592篇
  2022年   598篇
  2021年   852篇
  2020年   1039篇
  2019年   1379篇
  2018年   1230篇
  2017年   1230篇
  2016年   1149篇
  2015年   1097篇
  2014年   1205篇
  2013年   2016篇
  2012年   986篇
  2011年   1099篇
  2010年   981篇
  2009年   1339篇
  2008年   1329篇
  2007年   1261篇
  2006年   1186篇
  2005年   1003篇
  2004年   966篇
  2003年   881篇
  2002年   721篇
  2001年   575篇
  2000年   559篇
  1999年   549篇
  1998年   459篇
  1997年   405篇
  1996年   383篇
  1995年   364篇
  1994年   312篇
  1993年   240篇
  1992年   236篇
  1991年   205篇
  1990年   190篇
  1989年   168篇
  1988年   124篇
  1987年   116篇
  1986年   99篇
  1985年   89篇
  1984年   79篇
  1983年   26篇
  1982年   75篇
  1981年   54篇
  1980年   40篇
  1979年   33篇
  1978年   20篇
  1977年   12篇
  1976年   9篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
2.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
3.
A promising producer of bioactive compounds isolated from a Brazilian tropical soil was tested for its range of antimicrobial activities. Strain 606, classified as Streptomyces sp., could not be identified up to species level, suggesting a possible new taxon. The supernatant and 10 extracts and fractions, obtained by extraction and chromatographic techniques, presented antimicrobial activity using antibiograms. The methanolic fraction was highly active against pathogenic bacteria, phytopathogenic fungi and the human pathogenic yeast Candida albicans. It also possessed high antiviral activity inhibiting the propagation of an acyclovir-resistant herpes simplex virus type 1 strain on HEp-2 cells at non-cytotoxic concentration. The strong cytotoxic effect suggests an antitumour action. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
4.
5.
In this contribution we investigate the impact of the forcing waveform on the productivity of a continuous bioreactor governed by an unstructured, nonlinear kinetic model. The (periodic) forcing is applied on the substrate concentration in the feed. To this end, some alternative waveforms commonly encountered in practice are evaluated and their performance is compared. An analytical/numerical approach is used. The preliminary analytical step is based on the π‐criterion that gives useful information for small amplitudes. The extension to larger amplitudes, when significant improvements are expected, is then performed through a continuation‐optimization procedure. It is found that the choice of the specific waveform has an impact on the performance of the process and there is no unique best forcing for any process condition, but its choice depends on the operating parameters and the forcing amplitude and frequency values. Further, the influence of the waveform functions on the wash‐out conditions are extensively examined. The analysis shows that all the waveforms examined in this work may lead to significant enlargement of the nontrivial regime with respect to a steady state operation. In particular, square‐wave forcing leads in practice to the extinction of the wash‐out conditions for any feed substrate concentration and for a well defined choice of the forcing parameters. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
6.
Enumeration of denitrifying microbial populations in turf   总被引:2,自引:0,他引:2  
Summary Denitrifer populations of a silt and silt loam soil under a Kentucky bluegrass turf were enumerated using the most probable number (MPN) procedure. The influence of soil texture, soil depth, soil moisture, and additions of nitrate fertilizer on denitrifier populations were determined. Saturated soil conditions increased denitrifier populations 87-fold in the silt soil and 121-fold in the silt loam soil. Denitrifier populations did not differ significantly between soil depths and additions of fertilizer nitrate did not influence populations.  相似文献   
7.
To explain higher-level heritability, we propose a dynamical systems approach, based on simulations of the high-dimensional replicator equation with mutation dynamics. We assume that all variants are generated from within the groups of variants through mutations. Simulating the equation with a random interaction matrix and possible variants, we report that this system tends to have many attractors, of fixed point, chaotic and quasiperiodic type. In a chaotic attractor, special gene-like variants appear to control the heritability ofthe system, in the sense that removal of the variants would easily enable the system to depart from the attractor. Those variants do not predominate in thepopulation size, but have the lowest net reproduction and mutation rates on average. Because their rate of growth is small, they are named neutral phenotypes. Additionally, combinatorial effects of these neutral variants to the entire system are reported.  相似文献   
8.
Aim It is a central issue in ecology and biogeography to understand what governs community assembly and the maintenance of biodiversity in tropical rain forest ecosystems. A key question is the relative importance of environmental species sorting (niche assembly) and dispersal limitation (dispersal assembly), which we investigate using a large dataset from diverse palm communities. Location Lowland rain forest, western Amazon River Basin, Peru. Methods We inventoried palm communities, registering all palm individuals and recording environmental conditions in 149 transects of 5 m × 500 m. We used ordination, Mantel tests and indicator species analysis (ISA) to assess compositional patterns, species responses to geographical location and environmental factors. Mantel tests were used to assess the relative importance of geographical distance (as a proxy for dispersal limitation) and environmental differences as possible drivers of dissimilarity in palm species composition. We repeated the Mantel tests for subsets of species that differ in traits of likely importance for habitat specialization and dispersal (height and range size). Results We found a strong relationship between compositional dissimilarity and environmental distance and a weaker but also significant relationship between compositional dissimilarity and geographical distance. Consistent with expectations, relationships with environmental and geographical distance were stronger for understorey species than for canopy species. Geographical distance had a higher correlation with compositional dissimilarity for small‐ranged species compared with large‐ranged species, whereas the opposite was true for environmental distance. The main environmental correlates were inundation and soil nutrient levels. Main conclusions The assembly of palm communities in the western Amazon appears to be driven primarily by species sorting according to hydrology and soil, but with dispersal limitation also playing an important role. The importance of environmental characteristics and geographical distance varies depending on plant height and geographical range size in agreement with functional predictions, increasing our confidence in the inferred assembly mechanisms.  相似文献   
9.
10.
Recent studies have discovered strong differences between the dynamics of nucleic acids (RNA and DNA) and proteins, especially at low hydration and low temperatures. This difference is caused primarily by dynamics of methyl groups that are abundant in proteins, but are absent or very rare in RNA and DNA. In this paper, we present a hypothesis regarding the role of methyl groups as intrinsic plasticizers in proteins and their evolutionary selection to facilitate protein dynamics and activity. We demonstrate the profound effect methyl groups have on protein dynamics relative to nucleic acid dynamics, and note the apparent correlation of methyl group content in protein classes and their need for molecular flexibility. Moreover, we note the fastest methyl groups of some enzymes appear around dynamical centers such as hinges or active sites. Methyl groups are also of tremendous importance from a hydrophobicity/folding/entropy perspective. These significant roles, however, complement our hypothesis rather than preclude the recognition of methyl groups in the dynamics and evolution of biomolecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号